Mostrando entradas con la etiqueta Conectividad. Mostrar todas las entradas
Mostrando entradas con la etiqueta Conectividad. Mostrar todas las entradas

viernes, 28 de diciembre de 2012

El mito de la representación de la conectividad en redes cerebrales



En la última década venimos asistiendo al fuerte auge de lo que se está dando en llamar la "Neurociencia de redes", esto es, el estudio de la conectividad de redes cerebrales, mediante técnicas procedentes de la teoría de grafos. Testigo es el libro de Olaf Sporns, "Networks of the brain" (2010), cuya portada sirve de acompañamiento gráfico a esta entrada del blog. Siendo muy loable la empresa y más si se refiere a la búsqueda de un conectoma o mapa de conexiones "privilegiadas" en el cerebro, desde aquí quiero alertar del peligro y de la simplificación a la que puede abocar este propósito. La frenología de Gall y su consiguiente localizacionismo, ya fueron objeto de abandono hace muchos años. ¿Queremos ahora anclarnos en una especie de localizacionismo cerebral pero ahora de redes? ¿Podemos sentirnos mínimamente satisfechos con representaciones llenas de colorines de carreteras "primarias" y "secundarias" en el cerebro humano?
La teoría de grafos, una de las herramientas primordiales usadas en este proceso representacional sirve para lo que sirve, pero no debería ser tomada como la bolita de cristal de los futuros videntes del cerebro humano. Veamos. Nos interesa estudiar la evolución de propiedades en las redes cerebrales, ¿no? La teoría de grafos al azar de Erdos y Renyi es una buena herramienta. Se trata de crear conjuntos de grafos en los que se definen distribuciones relevantes de probabilidad. Muy bien, esta aplicación ha resultado especialmente exitosa en las ciencias sociales, en el estudio de la conectividad en INTERNET, en grafos de mundos pequeños, como ponen de manifiesto las contribuciones de Watts, por ejemplo. ¿Sirve igual para estudiar la conectividad cerebral? Cuidado, no confundamos el uso de una simple herramienta formal con la realidad. Unas manos en posición cóncava sirven para retener agua pero ¿usaríamos éstas como el medio de transporte adecuado para acarrear grandes cantidades de agua? Y no estoy hablando aquí simplemente de complejidad bruta, estoy hablando de más cosas, como, por ejemplo, de enrevesadísimas mezclas de dinámicas: deterministas, no deterministas, estocásticas...O que nos hemos creído, ¿que el cerebro humano puede reducirse a una especie de cabeza de maniquí estudiable a través de modelos límite, cual si fueran arquetipos?
Vayamos a las redes dinámicas o redes EVS de Trofimova. Ok, son muy interesantes. Cambiamos la probabilidad de distribución de una propiedad según vayan variando los valores de los parámetros de control. Tienen de bueno el que permiten una fluctuación residual de las propiedades, es decir, que superado un umbral, una buena cantidad de redes exhibiría la propiedad pero no todas. Esto quizá se empiece a parecer algo más a la auténtica dinámica cerebral, frente a la distribución de la probabilidad como una delta de Dirac en los grafos de Erdos. No obstante, ¿cuántos parámetros de control tenemos en el cerebro y cómo están distribuidos? No estamos aquí haciendo referencia a las típicas cuestiones de emergencia vertical o de emergencia horizontal. Estamos aludiendo al uso de instrumentos formales para todo. Verdaderamente, ¿disponemos de la Matemática suficiente, a día de hoy, para estudiar la conectividad cerebral o pensamos que el desarrollo actual de la teoría de grafos es suficiente? Sinceramente, cuando en algún estudio leo que tal sincronización o desincronización entre redes cerebrales puede subyacer a la manifestación de un síndrome neurológico determinado, no sé muy bien qué estoy leyendo. Simplemente, no entiendo qué se me quiere dar a entender.

viernes, 5 de febrero de 2010

Conectividad cerebral


Hace más de 60 años, McCulloch y Pitts propusieron que la función cerebral surge a partir de neuronas binarias agrupadas en redes. En aquellos años, Hebb introdujo una de las reglas de aprendizaje más usadas en redes neuronales. A partir de ahí encontramos los "perceptrones" de Rosenblatt, la Teoría de la Resonancia Adaptativa de Grossberg o las redes simétricas de Hopfield. Pero todavía faltaba la tecnología para capturar la dinámica de redes de una manera cuantificable. La entrada en acción del formato digital permitió manejar propiamente datos procedentes de las medidas realizadas a través de la Electroencefalografía, culminada mediante la irrupción de la neuroimagen funcional. Uno de los grandes retos actuales es el de desbrozar los mecanismos de la función cerebral en redes analizadas en arquitecturas globales y locales.
La unidad básica de conexión en el cerebro es el contacto de una neurona con otra, que es caracterizada por la sinapsis neuronal. Si nos desplazamos desde las conexiones neuronales individuales hasta las conexiones entre regiones del cerebro, la resonancia magnética por difusión se basa en localizar secuencias pulsátiles que elicitan señales que reflejan la orientación de los procesos de difusión en tejidos blandos, específicamente de las moléculas de agua en el cerebro. Las señales indican dos características esenciales: la desviación de la difusión en cada "voxel" medido y la orientación tridimensional del tensor de difusión. Comparando los tensores en los "voxels" adyacentes, es posible concatenar las orientaciones más consistentes ("tractografía") y visualizarlas como líneas que corresponden a los tractos fundamentales de materia blanca en el cerebro humano. Obviamente, la visualización de los tractos no es directa sino que depende de los parámetros del algoritmo de reconstrucción. La tractografía es incapaz de discernir entre las muchas constelaciones geométricas dentro de un "vóxel" que conducen a la misma señal. Lo ideal sería poder establecer una conexión directa entre conectividad neuronal y regional, pero dicha conexión no es directa. Nosotros podemos examinar incluso las arborizaciones axonales locales pero no las proyecciones entre regiones del cerebro. Parece, eso sí, que tales proyecciones se originan desde las neuronas en capas infragranulares y supragranulares y que las neuronas de proyección son células piramidales (Kötter, 2007). Pero, ¿qué significa que una región del cerebro se proyecta hacia otra? Existen muchas definiciones diferentes de regiones cerebrales, resultando una enorme variabilidad, por lo que es muy difícil obtener afirmaciones precisas sobre conectividad entre regiones. Por ejemplo, se sabe que las terminaciones axonales de caminos recíprocos usualmente evitan la capa IV y se denominan conexiones descendentes, pero apenas se conoce nada acerca de las preferencias neuronales de los terminales de los axones. No obstante, aunque a día de hoy tenemos que basarnos en medidas indirectas que indiquen conexiones anatómicas, desarrollar la matriz de conectividad del cerebro humano es una tarea de gran importancia para la Neurociencia. Para ello precisamos de un enfoque multimodal que tenga en cuenta los datos que aporte la resonancia por difusión, pero también su correlación con medidas de actividad procedentes de la resonancia magnética funcional y de la electroencefalografía.