En la última década venimos asistiendo al fuerte auge de lo que se está dando en llamar la "Neurociencia de redes", esto es, el estudio de la conectividad de redes cerebrales, mediante técnicas procedentes de la teoría de grafos. Testigo es el libro de Olaf Sporns, "Networks of the brain" (2010), cuya portada sirve de acompañamiento gráfico a esta entrada del blog. Siendo muy loable la empresa y más si se refiere a la búsqueda de un conectoma o mapa de conexiones "privilegiadas" en el cerebro, desde aquí quiero alertar del peligro y de la simplificación a la que puede abocar este propósito. La frenología de Gall y su consiguiente localizacionismo, ya fueron objeto de abandono hace muchos años. ¿Queremos ahora anclarnos en una especie de localizacionismo cerebral pero ahora de redes? ¿Podemos sentirnos mínimamente satisfechos con representaciones llenas de colorines de carreteras "primarias" y "secundarias" en el cerebro humano?
La teoría de grafos, una de las herramientas primordiales usadas en este proceso representacional sirve para lo que sirve, pero no debería ser tomada como la bolita de cristal de los futuros videntes del cerebro humano. Veamos. Nos interesa estudiar la evolución de propiedades en las redes cerebrales, ¿no? La teoría de grafos al azar de Erdos y Renyi es una buena herramienta. Se trata de crear conjuntos de grafos en los que se definen distribuciones relevantes de probabilidad. Muy bien, esta aplicación ha resultado especialmente exitosa en las ciencias sociales, en el estudio de la conectividad en INTERNET, en grafos de mundos pequeños, como ponen de manifiesto las contribuciones de Watts, por ejemplo. ¿Sirve igual para estudiar la conectividad cerebral? Cuidado, no confundamos el uso de una simple herramienta formal con la realidad. Unas manos en posición cóncava sirven para retener agua pero ¿usaríamos éstas como el medio de transporte adecuado para acarrear grandes cantidades de agua? Y no estoy hablando aquí simplemente de complejidad bruta, estoy hablando de más cosas, como, por ejemplo, de enrevesadísimas mezclas de dinámicas: deterministas, no deterministas, estocásticas...O que nos hemos creído, ¿que el cerebro humano puede reducirse a una especie de cabeza de maniquí estudiable a través de modelos límite, cual si fueran arquetipos?
Vayamos a las redes dinámicas o redes EVS de Trofimova. Ok, son muy interesantes. Cambiamos la probabilidad de distribución de una propiedad según vayan variando los valores de los parámetros de control. Tienen de bueno el que permiten una fluctuación residual de las propiedades, es decir, que superado un umbral, una buena cantidad de redes exhibiría la propiedad pero no todas. Esto quizá se empiece a parecer algo más a la auténtica dinámica cerebral, frente a la distribución de la probabilidad como una delta de Dirac en los grafos de Erdos. No obstante, ¿cuántos parámetros de control tenemos en el cerebro y cómo están distribuidos? No estamos aquí haciendo referencia a las típicas cuestiones de emergencia vertical o de emergencia horizontal. Estamos aludiendo al uso de instrumentos formales para todo. Verdaderamente, ¿disponemos de la Matemática suficiente, a día de hoy, para estudiar la conectividad cerebral o pensamos que el desarrollo actual de la teoría de grafos es suficiente? Sinceramente, cuando en algún estudio leo que tal sincronización o desincronización entre redes cerebrales puede subyacer a la manifestación de un síndrome neurológico determinado, no sé muy bien qué estoy leyendo. Simplemente, no entiendo qué se me quiere dar a entender.
2 comentarios:
Coincido plenamente contigo una vez más, Carlos, hasta el punto que he publicado recientemente un post que, desde mi perspectiva, dice lo mismo que tú: no se puede entender la mente a través de las neuronas.
http://santiagofbarrero.wordpress.com/2012/12/12/cmo-no-funciona-la-mente-1-la-idolatra-de-la-neurona/
El "neuronacentrismo" es un lastre que impide el avance de la neurociencia.
Un cordial saludo
Cuando leo alguno de estos trabajos que usan teoría de grafos en neurociencia, al principio siempre me parecen reveladores, y luego me quedo pensando sobre qué hay de fuerte en el resultado. No se ha desarrollado una matemática a partir de la neurociencia, sólo se aplica la matemática ya existente. Supongo que no es algo malo, quizás es lo mejor que podemos hacer al presente. Pero a veces las publicaciones científicas pueden ser "deshonestas", al no ser muy críticas respecto de lo que el resultado realmente aporta al conocimiento.
Aunque me gustaría pensar que entender el cerebro requiere descubrir principios simples y potentes, hoy por hoy creo que falta hacer mucha ingeniería inversa del cerebro, mucho dato duro. Tenemos que aceptar la posibilidad de que el modelo mas mínimo y sencillo de cerebro sea increíblemente complejo.
Publicar un comentario